TRIS- AND TETRAKIS-(TRIFLUOROMETHYL)FLUOROGERMANATES; THE STRUCTURE OF AN ANION WITH PENTACOÖRDINATED GERMANIUM

D.J. BRAUER, J. WILKE and R. EUJEN*
FR 9, Anorganische Chemie, Universität-Gesamthochschule Wuppertal (F.R.G.)
(Received June 16th, 1986)

Summary

Reactions of $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeX}(\mathrm{X}=$ halogen $)$ or $\left(\mathrm{CF}_{3}\right)_{4} \mathrm{Ge}$ with fluoride ions in aqueous or acetonitrile solutions give the trigonal-bipyramidal $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}^{-}$and octahedral fac- $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{3}{ }^{2-}$ or cis- $\left(\mathrm{CF}_{3}\right)_{4} \mathrm{GeF}_{2}{ }^{2-}$ anions, respectively. The crystal structure of $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}\right]$ has been determined. The symmetry of the anion $\left(C_{s}\right)$ approximates to $C_{3 v}$, with axial F atoms ($r_{\mathrm{av}}(\mathrm{GeF}) 1.835(8) \AA$) and equatorial CF_{3} groups ($r_{\mathrm{av}}(\mathrm{GeC}) 2.000(5) \AA$) (both distances corrected for libration). The bonding in the anion is discussed on the basis of structural and vibrational spectral data. The configurations of the octahedral complexes have been deduced from their ${ }^{19} \mathrm{~F}$ NMR spectra.

Introduction

Pentacoordination is uncommon in germanium chemistry. Most such pentacoordinate species contain chelating ligands and possess geometries between trigonal-bipyramidal and square-pyramidal [1] or display internal coordination via N [2], O [3] or S atoms [4]. Internal $\mathrm{Ge}-\mathrm{N}$ coordination is also found for some germatranes [5], whereas the trimethylamine adduct of GeCl_{4} represents an example of an almost ideal trigonal-bipyramid [6]. The geometry of the structural analogue of $\mathrm{SiF}_{5}{ }^{-}$, monomeric GeF_{5}^{-}, has been deduced only from vibrational spectra [7], since most structures with a $\mathrm{GeF}_{5}{ }^{-}$stoichiometry contain bridged octahedral geometries.

With the highly electronegative CF_{3} group as a substituent, the Lewis acid character of the central germanium atom is conserved. The bulk of the CF_{3} unit, however, leads to the expectation that pentacoordination might be favored for germanes containing several CF_{3} groups; octahedral fluoro complexes have, in fact, been observed upon fluoride addition to $\mathrm{CF}_{3} \mathrm{GeF}_{3}$ or $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{GeF}_{2}$, whereas with $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}$ the ${ }^{19} \mathrm{~F}$ NMR spectrum is in accord with a pentacoordinated $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}{ }^{-}$anion with the fluorines in the axial positions [8]. In extension of this
work we report on the crystal structure of pentacoordinated $(\mathrm{CF}, \mathrm{GeF}$, as well as ${ }^{1 / \mathrm{F}}$ NMR spectroscopic evidence for the structures of hexacoordinated (CF_{3}) , GeF_{3} : and $\left(\mathrm{CF}_{3}\right)_{4} \mathrm{GeF}_{2}^{2}$.

The molecular structures of these complexes are abo of great interest with respect to the nature of the Ge C bond. In general, long M C distances have been reported for M (F : wnits where X is an dectropositive man group clement [9] For example, the (ec $\left(\text { bond in Ge(} \mathrm{CF}_{3}\right)_{4}$ is lengthened by 0.044 A compared with that in Ge($\left.\mathrm{CH}_{3}\right)_{4}[10]$ despite the electron whthdrawing power of the fluonine atoms. an effect which is ascribed to the Coulomb repulsion between the posituely-charged carbon and germanium atoms. Such a repalswe interacton might be reduced in animnic species. sines in such cases the charge on the germanimat aton bhould be kes positive and might even hocome negative. Alongside the general bond-lenghening effect associated with complexation a compensating bomd-shortenme contrbuthon might be expected.

Fxperimental

The compounds $\left(\mathrm{CF}_{3}\right)_{3}$ (iel. $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeCl}$ and $\left(\mathrm{CF}_{3}\right)_{4}$ Ce were prepared as described previously [11]. Acetonitrile was refluxed and redistilled from $\mathrm{P}_{4} \mathrm{O}_{10}$. Potassium fluoride was dried in vacuo at $400^{\circ} \mathrm{C}$ for several hours and reated with 1 am of $\mathrm{SiH}_{2} \mathrm{Br}$.
${ }^{14}$ F NMR spectra ware recorded on a Varian EM 390 spectrometer uperating at 84.67 MH , chemical shits referring to internal CPC: Raman opecta were obtained with a Eary 82 instrument equipped with a Kr haer $647.1 \mathrm{~nm}, 200 \mathrm{~mW}$ at the samples. Infrared specta were recorded on a Perkin Elmer PE s80B spectrometer.
 $\mathrm{CeF}_{2} \mathrm{~J}$
$\left(\mathrm{CF}_{3}\right)_{3}$ (jeCl was treated with excess of concentrated aydeous NaF solution. The water was removed in vacuo and the residue extracted with ethanol. Evaporation of the extract gave $\mathrm{Na}\left[\left(\mathrm{CF}_{3}\right), \mathrm{GeF}_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$. Treatment with $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NKCl}\right.$ in ethanol then gave $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right](\mathrm{CF})$ (efer $]$, which crystallized as colorless needles.
 Ihuor-tetrakis(trifluoromethrigermanate, $K_{2} /\left(C F_{3}\right)_{4} G F_{.}$

A suspension of carefully dried $\mathrm{KF}(2 \mathrm{~g})$ in $\mathrm{CH}(\mathrm{CN}$ was stired for 5 min with 1 mmol of $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeCl}$ or $\left(\mathrm{CF}_{3}\right)_{4} \mathrm{Ge}$. The solution was filtered in vacuo and evaporated to form white $\mathrm{K},[(\mathrm{CF}), \mathrm{GeF}]$ or $\mathrm{K},\left[(\mathrm{CF},)_{4} \mathrm{GF}\right]$

X-Ray stractural amalysis
A needle-shaped crystal $(0.15 \times 0.20 \times 1.16 \mathrm{~mm})$ of $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\left(\mathrm{CF}_{3}\right)_{3} \text { (reF }\right]_{2}$ wats sealed in a glass capillary under argon. The orthorhombic space groups consistent with the symmetry and systematic absences revealed by Weissenberg photographs were Pnma and $P n 2_{1} a$ and the former was confirmed bs the refinement. Crystal data determined at $23^{\circ} \mathrm{C}$ with a Siemens AED 1 diffactometer emplosing Zr-filtered צ50-K radiation ($\lambda 0.71073$ A) are a $13.964(3), 610.8772), 9.402(1) \mathrm{A}, 7=4$ and $d_{x}=1.822 \mathrm{~g} / \mathrm{cm}^{\prime}$.

TABLE 1
POSITIONAL AND ISOTROPIC OR EQUIVALENT ISOTROPIC THERMAL" PARAMETERS FOR $\left.\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}\right]$

Atom	x	y	z	U
Ge	$0.25659(4)$	0.7500	$0.19306(7)$	$0.0540(2)$
F(1)	$0.3253(3)$	0.7500	$0.3555(5)$	$0.093(2)$
F(2)	$0.1924(3)$	0.7500	$0.0252(4)$	$0.092(2)$
F(3)	$0.2547(5)$	$0.5154(7)$	$0.074(2)$	$0.192(6)$
F(3A)	$0.281(2)$	$0.503(3)$	$0.194(4)$	$0.08(1)$
F(4)	$0.3865(5)$	$0.5981(5)$	$0.054(1)$	$0.138(3)$
F(4A)	$0.401(2)$	$0.579(3)$	$0.165(4)$	$0.09(1)$
F(5)	$0.347(1)$	$0.5255(7)$	$0.2468(8)$	$0.192(5)$
F(5A)	$0.307(2)$	$0.566(3)$	$0.004(3)$	$0.08(1)$
F(6)	$0.0824(5)$	$0.6542(9)$	$0.2714(9)$	$0.203(5)$
F(6A)	$0.122(2)$	$0.843(3)$	$0.385(3)$	$0.09(1)$
F(7)	$0.1431(6)$	0.7500	$0.4367(8)$	$0.148(6)$
F(7A)	$0.060(3)$	0.7500	$0.227(4)$	$0.07(1)$
N	$0.4580(4)$	0.7500	$0.6721(5)$	$0.052(2)$
C(1)	$0.1341(6)$	0.7500	$0.298(1)$	$0.091(4)$
C(2)	$0.3137(5)$	$0.5895(6)$	$0.1392(7)$	$0.080(2)$
C(3)	$0.5216(6)$	0.7500	$0.7978(8)$	$0.088(3)$
C(4)	$0.3558(6)$	0.7500	$0.7177(9)$	$0.086(4)$
C(5)	$0.4769(4)$	$0.6386(5)$	$0.5835(5)$	$0.079(2)$

${ }^{a} U=\frac{1}{3} \Sigma_{i} U_{i /}$ for anisotropically refined atoms.

Intensity data ($h k l, 4^{\circ} \leqq 2 \theta \leqq 65^{\circ}$) were collected by the $2 \theta-\omega$ step-scan technique as described previously [12]. The data were corrected for coincidence losses, the slow decay (4.5%) of standard reflections checked hourly, and absorption (μ $22.2 \mathrm{~cm}^{-1}$, transmission 0.617 and 0.733). Of the 2697 unique reflections measured, only 1169 with $\left|F_{\mathrm{o}}\right| \geqq 4 \sigma\left(\left|F_{\mathrm{o}}\right|\right)$ were deemed "observed" and used in the refinement.

Fig. 1. A perspective drawing of the anion in $\left[\left(\mathrm{CII}_{3}\right)_{4} \mathrm{~N}^{2}\right]\left[\left(\mathrm{CF}_{3}\right)_{3} \mathrm{CeF}_{2}\right]$.

The structure was solved by the heavy atom method and refined by full-matrix least squares techniques. Following anisotropic refinement of the non-hydrogen atoms, the residual electron density in a difference Fourter map suggested a second orientation of low occupancy for each CF $_{3}$ group as well as the positions of the hydrogen atoms. With the latter introduced at ideal positions (C H0.95 A H C H 109.5°. staggered), the positional and isotropic thermal parameter of the new fluorine atoms along with appropriately constrained occupaney factors were abo

 $0.0004\left|F_{0}\right|^{2}$, Densities in the final difference Fourter synthesis ranged from 0.63 to $-0.37 \mathrm{C} / \mathrm{A}^{3}$ and are of no chemical significance. Positional parameters are given in Table 1, the numbering seheme of the anion being defined in Fig. 1. Similar degrees of disorder (0.8662): 0.14(2)) are found for both crestallographically independent C_{3} groups, and the flomene atoms of how ocupancy are designated with an "A". SHELX-76 [13]. ORTEP-II [14] and local programs were wed in the calculations [15].

Description of the orstal structure
The crystals are composed of discrete $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]$ cations and $\left|\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}\right|$ anions. Interionic contacts are not unusual, the shortest being F(1) $\mathrm{H}(5 \mathrm{C})(1 / 2-x$. $1-1 / 2+2,2.40 \mathrm{~A}$. Each cation is surrounded by a nearly cuhic arras of eight anions but the arrangement of eight anions about each cation is much less regular. Both ions are located on urystallographic mirror planes. These planes pass through N. C(3). $\mathrm{H}(3 \mathrm{~B}), \mathrm{C}(4)$ and $\mathrm{H}(4 \mathrm{~B})$ of the cation and $\mathrm{Ge} \mathrm{F}(\mathrm{H}, \mathrm{P}(2),(1), F(7)$ and $F(7 A)$ of the anion.

Bond distances and angles are tabulated in Tables 2 and 3. The CF groups containing the F atoms of how occupancy are related to those in the dominant configuration by a rotation of -60° about the Ge-C bonds. Examination of intermolecular distances reveals that the volume occupied by the anion is sufficiently large to accommodate both rotamers. Because of the fow precision obtamed for the "A" coordinates they are not considered in the discasion belos

The Ge atom is rigonal-bipyramidally coordnated with $F(1)$ and $F(2)$ in axial positions and $\mathrm{C}(1), \mathrm{C}(2)$ and $(12)^{\prime}$ in equatorial positions. The themat parameters of these six atoms are well fitted by a TLS rigid-body-motion model [16]. Since the

TABLE 2

($30-\mathrm{F}(\mathrm{l}$)	1.8144	$(1) \cdots(6 A)$	1.20)
(ic)F2)	1.8154	(11$) \cdot 17 \mathrm{~A}$	1.24t
Crecl)	[.9759)	($21-\mathrm{P}(3 \mathrm{~A})$	1.89
(心.)	1.985(6)	(12) - Fat	1.253)
(1) 「(6)	1.2014	(12) FiSn)	(3) ${ }^{3}$
(11)-Fi ${ }^{(1)}$	6.310)	\therefore (13)	3 4 Ts4
(2) Fis)	1.302,4)	$\mathrm{N}-(14)$	1.489\%
$(2)-5(4)$	1.2904.7		a. 54.46 c
(1) - F 5)	$1214{ }^{\circ} 9$		

[^0]TABLE 3
SELECTED BOND ANGLES $\left({ }^{\circ}\right)$ IN $\left[\mathrm{Me}_{4} \mathrm{NJI}\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}\right]$

$\mathrm{F}(1)-\mathrm{Ge}-\mathrm{F}(2)$	$177.4(2)$	$\mathrm{Ge}-\mathrm{C}(2)-\mathrm{F}(5)$	$114.3(5)$
$\mathrm{F}(1)-\mathrm{Ge}-\mathrm{C}(1)$	$92.2(3)$	$\mathrm{Ge}-\mathrm{C}-\mathrm{F}(\mathrm{A})^{h}$	$115(1)$
$\mathrm{F}(1)-\mathrm{Ge}-\mathrm{C}(2)$	$90.2(2)$	$\mathrm{F}(6)-\mathrm{C}(1)-\mathrm{F}(6)^{\prime}$	$107.5(9)$
$\mathrm{F}(2)-\mathrm{Ge}-\mathrm{C}(1)$	$90.4(3)$	$\mathrm{F}(6)-\mathrm{C}(1)-\mathrm{F}(7)$	$104.3(7)$
$\mathrm{F}(2)-\mathrm{Ge}-\mathrm{C}(2)$	$88.6(2)$	$\mathrm{F}(3)-\mathrm{C}(2)-\mathrm{F}(4)$	$104.5(7)$
$\mathrm{C}(1)-\mathrm{Ge}-\mathrm{C}(2)$	$118.4(2)$	$\mathrm{F}(3)-\mathrm{C}(2)-\mathrm{F}(5)$	$104.9(8)$
$\mathrm{C}(2)-\mathrm{Ge}-\mathrm{C}(2)^{a}$	$123.2(3)$	$\mathrm{F}(4)-\mathrm{C}(2)-\mathrm{F}(5)$	$103.6(7)$
$\mathrm{Ge}-\mathrm{C}(1)-\mathrm{F}(6)$	$112.8(6)$	$\mathrm{F}(\mathrm{A})-\mathrm{C}-\mathrm{F}(\mathrm{A})^{b}$	$103(1)$
$\mathrm{Ge}-\mathrm{C}(1)-\mathrm{F}(7)$	$114.5(7)$	$\mathrm{C}(3)-\mathrm{N}-\mathrm{C}(4)$	$110.2(6)$
$\mathrm{Ge}-\mathrm{C}(2)-\mathrm{F}(3)$	$114.2(5)$	$\mathrm{C}(3)-\mathrm{N}-\mathrm{C}(5)$	$109.8(4)$
$\mathrm{Ge}-\mathrm{C}(2)-\mathrm{F}(4)$	$114.1(5)$	$\mathrm{C}(4)-\mathrm{N}-\mathrm{C}(5)$	$109.3(4)$
		$\mathrm{C}(5)-\mathrm{N}-\mathrm{C}(5)^{\prime}$	$108.4(5)$

${ }^{a} x^{\prime}, y^{\prime}, z^{\prime}=x, 1.5-y, z,{ }^{b}$ These are averaged bond angles involving the fluorine atoms of low occupancy.
librational corrections to the $\mathrm{Ge}-\mathrm{F}$ and $\mathrm{Ge}-\mathrm{C}$ bond lengths are statistically significant, corrected values are used in the following discussion. The mean $\mathrm{Ge}-\mathrm{F}$ bond distance, $1.835(8) \AA$, agrees excellently with those trans F in cis- $\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CeF}_{4}\right]^{2-}$, corrected $1.835(2) \AA[8]$. Although the $\mathrm{Ge}-\mathrm{F}$ bonds in these anions are more than $0.1 \AA$ longer than those determined in the gas phase for $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{GeF}_{2}, 1.697(3) \AA$ [17], the mean $\mathrm{Ge}-\mathrm{C}$ distance in $\left[\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}\right]^{-}, 2.000(6) \AA$, agrees well with the gas phase value for $\left(\mathrm{CF}_{3}\right)_{4} \mathrm{Ge}, 1.989(5) \AA$ [10], and $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{GeF}_{2}, 2.000(5) \AA$ [17], but is significantly shorter than those in cis-[$\left.\left[\mathrm{CF}_{3}\right)_{2} \mathrm{GeF}_{4}\right]^{2-}$, corrected 2.051(4) \AA [8].

Depending on the orientation of the CF_{3} groups, the highest possible symmetry for the $\left[\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}\right]^{-}$anion is not trigonal-bipyramidal $D_{3 h}$ but either $C_{3 h}$ or $C_{3 v}$. In the solid state the symmetry is lower $\left(C_{y}\right)$, and only roughly approximates to $C_{3 v}$. The $\mathrm{F}(1)-\mathrm{Ge}-\mathrm{F}(2)$ bond angle, $177.4(2)^{\circ}$, is slightly non-linear, a distortion which tilts the $\mathrm{Ge}-\mathrm{F}(1)$ bond further away from the $\mathrm{C}(1)-\mathrm{F}(7)$ bond with which it is eclipsed. The $\mathrm{C}(1)-\mathrm{Ge}-\mathrm{C}(2)$ bond angle, $118.4(2)^{\circ}$, is smaller than that across the mirror plane (i.e., $\left.\mathrm{C}(2)-\mathrm{Ge}-\mathrm{C}(2)^{\prime} 123.2(3)^{\circ}\right)$. On the other hand, the $\mathrm{C}(1), \mathrm{C}(2)$, $\mathrm{C}(2)^{\prime}$ and Ge atoms all lie within $0.02 \AA$ of the trigonal plane.

As can be seen from Fig. 1, each GeCF_{3} fragment exhibits large torsional amplitudes about its $\mathrm{Ge}-\mathrm{C}$ bond. Rigid-body-motion calculations yield libration-ally-corrected average $\mathrm{C}-\mathrm{F}$ distances of $1.397(6) \AA$. Since the corrections are large ($0.1 \AA$), they should not be accepted uncritically. While corrected distances found in crystal structures of cis-[(CF5 $\left.)_{2} \mathrm{GeF}_{4}\right]^{2-}$ [8] and $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeMn}(\mathrm{CO})_{5}$ [18] are not significantly shorter (1.39(1) and $1.38(1) \AA$, respectively), much shorter $\mathrm{C}-\mathrm{F}$ bond lengths were found in the gas phase for $\left(\mathrm{CF}_{3}\right)_{4} \mathrm{Ge}, 1.330(2) \AA$ [10], and $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{GeF}_{2}$, $1.336(2) \AA$ [17]. The larger $\mathrm{C}-\mathrm{F}$ distances are, however, in accord with the averaged $\mathrm{C}-\mathrm{F}$ stretch frequencies, which are red-shifted by ca. $40 \mathrm{~cm}^{-1}$ with respect to $\left(\mathrm{CF}_{3}\right)_{4} \mathrm{Ge}$ [19] or $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{GeF}_{2}$ [20]. Furthermore, the mean $\mathrm{F}-\mathrm{C}-\mathrm{F}$ angle, 104.7(4) ${ }^{\circ}$, found here is closer to those for $c i s-\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{GeF}_{4}\right]^{2-}, 103.8(3)^{\circ} \quad[8]$, and $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeMn}(\mathrm{CO})_{5}, 105.2(8)^{\circ}[18]$, than to the larger values for $\left(\mathrm{CF}_{3}\right)_{4} \mathrm{Ge}, 108.3(3)^{\circ}$ [10], and $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{GeF}_{2}, 108.6(3)^{\circ}$ [17]. Since the $\mathrm{C}-\mathrm{F}$ distances tend to increase as the $\mathrm{F}-\mathrm{C}-\mathrm{F}$ angles decrease [21], the changes in trends in the bond angles are consistent with the variations in the bond distances.

Results and discussion

Upon treatment with F in aqueous solution $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeX}(\mathrm{X}=$ halogen $)$ forms a stable complex anion. $\left[\left(\mathrm{CF}_{5}\right)_{3} \mathrm{GeF}_{2}\right]$, the structure of which may be dexcribed as an almost ideal trigonal bipyramid with equatorial Ge-C and axial (ie- F bonds (Fig 1). The Ge--CF F_{3} hond length shows no simple correlation with the coordination number of the Ge; for example, shorter distances are found in the pentacoordinated anion $\left[\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}\right]$ than in either the tetracoordinated species of $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeMn}$ $(\mathrm{CO})_{5}$, corrected $2.024(4)$ \& $[18]$. or the hexacoordinated anon $\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{GeF}_{4}\right]$ (vide supra). Instead. this distance seems to reflect the effective charge of the Ge atom. Increase in its electron density should (1) increase the effective covalemt radius of the germanium atom and (2) lead to Ge C bond strengthening by decreasing the Coulomb repulsion present in uncharged spectes stuch or $\left(\mathrm{CF}_{2}\right)_{4} \mathrm{Ge}$ For the pentacoordinated anion the two effects seem approximately to cancel out. whereas the additional negative charge of the diamion $\left[\left(\mathrm{CF}_{3}\right), \mathrm{GeF}_{4}\right]^{2}$ witl contribute to the first but only slightly to the second effect. The comparatively long distance in the pentacarbonyl manganese derivative is associated with an wonc contribution of $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{Ge} \mathrm{Mn}\left(\mathrm{CO}_{5}{ }^{\text {s }}\right.$ in the VB description |18). Indeed. a very weak Ge-C bond with an extrapolated length of 2.12 A has been indicated by vibrational data for the (CF_{3}) Ge^{*} anion [22].

A greater variation is found in the $\mathrm{Ge}-\mathrm{F}$ distances, which are very similar in the $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}$ and cis- $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{GeF}_{4}^{2}$ anions but much longer than those in the $\mathrm{GeF}_{6}{ }^{2}$ moiety. e.g. $1.72(1) \mathrm{A}$ in $\left(\mathrm{NH}_{4}\right) \mathrm{GeF}_{8}$ [231. 1.77 A in $\mathrm{K}_{2} \mathrm{CeF}_{8}$ [24]. or $1.785(3) \mathrm{A}$ in $\left(\mathrm{SF}_{3}\right)_{2} \mathrm{CeF}_{6}[25]$.

In this context. a simple bonding seheme which distributes the four ge valencies of these $\left[\left(\mathrm{CF}_{3}\right)_{n} \mathrm{GeF}_{m}\right]^{4} n=m^{\prime}$ compounds so that totals of n and $4-n$ are found in the Ge- C and $\mathrm{Ge}-\mathrm{F}$ linkages, respectively. must be considered. This scheme assign. valencies of $\mathrm{I}, 0.67,0.5$ and 0.5 to the Ge-F bonds of (CF) GeFe_{2}. GeF ${ }^{\text {t }}$. $\left[\left(\mathrm{CF}_{3}\right)_{3} \mathrm{CeF}_{2}\right]$ and $\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{GeF}_{4}\right]^{2}$. respectively: thus these predictions follow the variations in the bond lengths. This model, which involves transmission of the negative charge mainly into the Ge F bonds, is also supported by the vibrational data (Table 4). The rather isolated Ge-C stretching modes at .363 (o) and 235 cm ' $\left(a_{1}\right)$ are very similar to those for uncharged $\left(\mathrm{CF}_{3}\right)$, Ge^{2} species, whereas the averaged Ge-F stretching frequency of ca. 515 cm is clearly lower than that of $\mathrm{GeF}_{6}{ }^{2}$ [20] or GeF_{5} [7]. 563 and $644 \mathrm{~cm}^{\text {. . respectively, a difference wheh cannot be aseribed }}$ to the different coupling patterns. With the reasonable assumption of tholated Ge-F stretching modes, a value of $2.4 \mathrm{~N} \mathrm{~cm}{ }^{1}$ can be calculated for f(Ge F) compared with $2.9 \mathrm{~N} \mathrm{~cm}^{-1}$ for GeF^{2}. A sensitive probe for the enviromment of the CF_{5} group is the frequency of the δ mode that appears as a strong. highly polarized Raman line. The value of $727 \mathrm{~cm}{ }^{\text {b }}$ is close to that found for the hatides $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeX}$, e.g. 732 cm for $\mathrm{X}=\mathrm{Cl}$ [27], and clearly larger than those for $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeMn}(\mathrm{CO})_{5} .721 \mathrm{~cm}^{-1}[18]$, or the $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{Ge}$ anion. $701 \mathrm{~cm}^{1}$ [22] and these values reflect the bonding situation in these molecules.

While $C_{3 n}$ rather than $C_{3 .}$ symmetry was assumed in the dectron diffraction study of $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{PF}_{2}$ [28], its structure can be regarded as isontructural with that of $\left[\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}\right]^{\text {. }}$. Since these compounds are in a sense isoelectronic. comparison of their MCF_{3} and MF structural parameters after size corrections may reveal the influence of charge on these interactions. Size corrections are facilitated by subtrac-

TABLE 4
VIBRATIONAL SPECTRA OF THE $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}$ ION

$\mathrm{IR}_{\mathrm{KBr}}{ }^{*}$	$\mathrm{Ra}_{\text {sol }}{ }^{\text {b }}$	$\mathrm{Ra}_{\mathrm{aq}}{ }^{\text {c }}$	Assignment
	140w	(145vw)	$\delta(\mathrm{CGeF})$
	239 vs	235s,p	$\nu_{s}\left(\mathrm{GeC}_{3}\right)$
	260 m	255 m \}	$\rho\left(\mathrm{CF}_{3}\right)$
	275 m	275 m	$\rho\left(\mathrm{F}_{3}\right)$
363s	370 vw		$\nu_{a s}\left(\mathrm{GeC}_{3}\right)$
465vw	460w	475m,p	$\nu_{s}\left(\mathrm{GeF}_{2}\right)$
527 m	531m	530 m	$\delta_{a s}\left(\mathrm{CF}_{3}\right)$
556 s	555sh		$\nu_{a s}\left(\mathrm{GeF}_{2}\right)$
728 vw	729 s	727s,p	$\delta_{s}\left(\mathrm{CFF}_{3}\right)$
1078vs	1080w,b	1075vw	
1123 vs	1120 w , b	1120 vw)	$\nu_{a s,}\left(\mathrm{CF}_{3}\right)$
1177 vs	1180wm	1182w ${ }^{\text {w }}$,	$\nu_{s}\left(\mathrm{CF}_{3}\right)$
1208s	1208w	1208ww,(p) $\}$	$\nu_{s}\left(\mathrm{CF}_{3}\right)$

${ }^{a}$ As KBr pellet of $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}\right] .{ }^{b}$ From crystalline $\mathrm{Na}\left[\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}\right]$. ${ }^{\text {a Aqueous solution of }}$ $\mathrm{Na}\left[\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}\right]$.
tion of the corresponding covalent radius of M from the $\mathrm{M}-\mathrm{C}$ and $\mathrm{M}-\mathrm{F}$ bond lengths. For the $\mathrm{Ge}-\mathrm{F}$ and $\mathrm{P}-\mathrm{F}$ bonds, the differences are 0.62 and $0.50 \AA$, respectively, whereas for the $\mathrm{Ge}-\mathrm{C}$ and $\mathrm{P}-\mathrm{C}$ bonds, the corresponding differences are almost identical viz., 0.78 and $0.79 \AA$, respectively. These values reveal that with the same kind of hybridization the negative charge of the anion mainly effects the $\mathrm{Ge}-\mathrm{F}$ bond, the character of the $\mathrm{Ge}-\mathrm{C}$ bond remaining comparable with that of the uncharged species. Some delocalization of electron density into the $\mathrm{C}-\mathrm{F}$ bond is, however, indicaled by the larger $\mathrm{C}-\mathrm{F}$ distances, the lower $\mathrm{C}-\mathrm{F}$ stretching frequencies, and the smaller $\mathrm{F}-\mathrm{C}-\mathrm{F}$ bond angles.

In aqueous solution tris- and tetrakis(trifluoromethyl)germanes show no tendency to form hexacoordinated species. An intermediate complex formed from $\left(\mathrm{CF}_{3}\right)_{4} \mathrm{Ge}$ and F^{-}decomposes with evolution of HCF_{3}.
$\left(\mathrm{CF}_{3}\right)_{4} \mathrm{Ge} \xrightarrow{\mathrm{F}}\left(\mathrm{CF}_{3}\right)_{4} \mathrm{GeF}^{-} \xrightarrow{\mathrm{H}_{2} \mathrm{O}}\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}^{-}+\mathrm{HCF}_{3}$
In aprotic solvents, such as acetonitrile, both $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeX}(\mathrm{X}=$ halogen $)$ and $\left.\mathrm{CF}_{3}\right)_{4} \mathrm{Ge}$ add fluoride ions to form octahedral species which are unstable in water, e.g.

For both $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{3}{ }^{2-}$ and $\left(\mathrm{CF}_{3}\right)_{4} \mathrm{GeF}_{2}{ }^{2-}$ the ${ }^{19} \mathrm{~F}$ NMR spectra (Table 5) offer conclusive evidence for the presence of only the relevant cis isomer:

TABLE: 5
${ }^{14} \mathrm{~F}$ NMR DATA FOR TRIS- AND TETRAKIS(TRIFLUOROMETHYLIFLUOROGERMANATES *

Ion	$\delta\left(\mathrm{CF}_{3}\right)$	$\delta(\mathrm{F})$	/1F)
($\left.\mathrm{CF}_{3}\right)_{3} \mathrm{CicF}_{5}$	-54.0	-1376	110
fact $\left.\mathrm{CF}_{3}\right)^{\mathrm{GeF}}{ }^{3}$	59.1	1245	
	56.5	-1210	

"In $\mathrm{CH}_{3} \mathrm{CN}$; chemical shifts in ppm ws internal $\mathrm{CFC} l_{3}$, coupling consumts in H_{2} " $\mathrm{A}_{3} \mathrm{~A}_{3} \mathrm{~A}_{3} \mathrm{XX} \mathrm{X}^{\prime}$ "
 (a. 1i) $\mathrm{H} \%$

Though the line widths of the NMR signals of ca. 2 Hz do not allow a detailed analysis, the observed "pseudo-quartet" structure of the CF; resonance of $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{3}^{2}$ is in agreement with an $\mathrm{A}_{3} \mathrm{~A}_{3} \mathrm{~A}_{3}^{\prime \prime} \mathrm{XX}^{\prime} \mathrm{X}^{\prime \prime}$ spin system. Homonuclear decoupling leads to singlets for both the A and X parts. Similarly. instead of the simple $\mathrm{A}_{12} \mathrm{X}_{2}$ spectrum for a possible trans- $\left(\mathrm{CF}_{3}\right)_{4} \mathrm{CeF}_{2}{ }^{2}$, an asymmetric pattern of resonances arises for the C_{3} groups attributed to a $A_{3} A_{8}^{\prime} B_{6}$, pin system. which on decoupling of the X part symmetrizes to a poorly resolved $A_{\theta} B_{n}$ system.

Fluoride addition in CH, CN occurs stepwise. Addition of small amounts of KF to $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeCl}$ gives rise to two additional broad signals. at $-57.3(\mathrm{C} \%)$ and -134.5 ppm ($\mathrm{Ge} F$), which upon cooling below $0^{\circ} \mathrm{C}$ split into a doublet and decet. respectively ($J(\mathrm{FF}) 10 \mathrm{~Hz}$). These signals can not he attributed to ($\left.\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}$. since a chemical shift of -219 ppm has been reported for the Gef resonance of neat $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}$ [29], and this is shifted to -174 ppm in $\mathrm{CH}_{3} \mathrm{CN}$ whlution. Invead the similarity of chemical shifts suggests a pentacoordinated (CF ; $)_{, ~ \mathrm{GeFO}}^{\mathrm{G}}$ species. with F and Cl in the axial positions. Further KF addition leads to precipitation of KCl and formation of the stable $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}$, and ultimately to foc $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}^{2}{ }^{2}$ anions:
$\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeCl}+\mathrm{F} \rightarrow\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeFCl}$
$\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeFCl}^{-}+\mathrm{F}^{-} \rightarrow\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}+\mathrm{Cl}$
$\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{2}+\mathrm{F} \rightarrow f a c-\left(\mathrm{CF}_{3}\right)_{3} \mathrm{GeF}_{3}{ }^{2}$
Similarly. F^{-}addition to $\left(\mathrm{CF}_{3}\right)_{4} \mathrm{Ge}$ in $\mathrm{CH}_{3} \mathrm{CN}$ gives rise to additional signals at -54.8 and -114.6 ppm , the former being resolved to a doublet at ca. $-40^{\circ} \mathrm{C}$ ($J(\mathrm{FF}) 11 \mathrm{~Hz}$). The equivalence of the CF_{3} groups as well as the quite different Ge F shift indicates a fluxional $\left(\mathrm{CF}_{3}\right)_{4} \mathrm{GeF}^{-}$ion.

Acknowledgement

Support by the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie is gratefully acknowledged.

References

[^1]3 M. Dräger, Z. Anorg. Allg. Chem., 423 (1976) 53.
4 M. Dräger, Chem. Ber., 108 (1975) 1723.
5 L.O. Atovmyan, Ya.Ya. Bleidelis, A.A. Kemme and R.P. Shibaeva, Zh. Strukt. Khim., 11 (1978) 318; A.A. Kemme, Ya.Ya. Bleidelis, R.P. Shibaeva and L.O. Atovmyan, Zh. Strukt. Khim., 14 (1973) 103; S.N. Gurkova, A.I. Gusev, I.R. Segel'man, N.V. Alekseev, T.K. Gar and N.V. Khromova, Zh. Strukt. Khim., 22 (1981) 181.
6 M.S. Bilton and M. Webster, J. Chem. Soc., Dalton Trans., (1972) 722.
7 T.E. Mallouk, B. Desbat and N. Bartlett, Inorg. Chem., 23 (1984) 3160.
8 D.J. Brauer, H. Bürger and R. Eujen, Angew. Chem., 92 (1980) 859.
9 H. Oberhammer, J. Fluor. Chem., 23 (1983) 147, and references cited herein.
10 H. Oberhammer and R. Eujen, J. Mol. Struct., 51 (1979) 211.
11 R.J. Lagow, R. Eujen, L.L. Gerchman and J.A. Morrison, J. Amer. Chem. Soc., 100 (1978) 1722.
12 D.J. Brauer, H. Bürger, G.R. Liewald and J. Wilke, J. Organomet. Chem., 287 (1985) 305.
13 G.M. Sheldrick, SHELX-76, Program for crystal structure determination, University of Cambridge, England (1976).
14 C.K. Johnson, ORTEP-II, Report ORNL-5138, Oak Ridge National Laboratory. Tennessee (1976).
$15 F_{0}, F_{\mathrm{c}}$ lists, tables of hydrogen coordinates and anisotropic thermal parameters may be obtained from Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, by quoting the deposit number CSD-51976, the names of the authors and the literature reference.
16 V. Schomaker and K.N. Trueblood, Acta Crystallogr. B, 24 (1968) 63.
17 H . Oberhammer and R. Eujen, unpublished results.
18 D.J. Brauer and R. Eujen, Organometallics, 2 (1983) 263.
19 R. Eujen and H. Bürger, Spectrochim. Acta A, 35 (1979) 541.
20 H. Bürger and R. Eujen, Spectrochim. Acta A, 31 (1975) 1655.
A. Yokozeki and S.H. Bauer, Top. Curr. Chem. 53 (1975) 71.
R. Eujen, Spectrochim. Acta, in press.
B.K. Vainshtein and R.N. Kurdumova, Krystallografiya, 3 (1958) 29.
J.L. Hoard and W.B. Vincent, J. Amer. Chem. Soc., 61 (1939) 2849.

25 T.E. Mallouk, G.L. Rosenthal, G. Müller, R. Brusasco and N. Bartlett, Inorg. Chem., 23 (1984) 3167.
26 G.M. Begun and A.C. Rutenberg, Inorg. Chem., 6 (1967) 2212.
7 R. Eujen and H. Bürger, Spectrochim. Acta A, 35 (1979) 549.
8 H. Oberhammer, J. Grobe and D. LeVan, Inorg. Chem., 21 (1982) 275.
29 R. Eujen and R. Mellies, J. Fluor. Chem., 22 (1983) 263.

[^0]: " These values have not been corected for librational shortening

[^1]: 1 R.O. Day, J.M. Holmes, A.C. Sau and R.R. Holmes. Inorg. Chem., 21 , 1082 2 2×1 : R. R Hohmes, R.O Day, A.C. Sau, C.A. Poutasse and I.M. Holmes, Inorg Chem.. 24 (1985) 103
 2 C. Breliere, F. Carre, R.J.P. Corriu, A. De Saxce, M. Poiricr and G; Rown, J. Orqumemet Chem.. 205 (1) 81) C1

